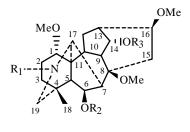
NORDITERPENOID ALKALOIDS FROM Delphinium cinereum

A. H. Mericli,¹ M. Ulusoylu Dumlu,² F. Mericli,¹ H. Ozcelik,³ J. Zapp,⁴ and H. Becker⁴

UDC 547.944/945


The genus Delphinium (Ranunculaceae) is represented by 26 species in the Flora of Turkey [1, 2].

In continuation of our investigations on Turkish *Aconitum*, *Delphinium*, and *Consolida* species [3–7] we have now studied an endemic species, *Delphinium cinereum* Boiss. There is no publication on the diterpenoid alkaloids of *D. cinereum*.

Delphinium cinereum Boiss. (Ranunculaceae) was collected near fields and roadsides in Antalya-Akseki, Turkey at an altitude 600–800 m in August 1999 and identified by one of us (H.O.) A voucher specimen is deposited in the Herbarium of Science and Literature Faculty of Suleyman Demirel University (Ozcelik 8194).

Dried and powdered aerial parts of *D. cinereum* (2.100 kg) were extracted with 90% EtOH by percolation at room temparature and the extract obtained evaporated to dryness *in vacuo*. The residue was treated with 0.5 N H₂SO₄ and extracted with CHCl₃. NaOH (5%) was then added to the aqueous solution (cooled in ice) to bring it to pH 10. The solution was again extracted with CHCl₃. The CHCl₃ extract was evaporated to dryness, yielding 10 g of crude alkaloid mixture. The crude alkaloid extract was first separated by VLC on a basic Al₂O₃ (EM 1085) column with petroleum ether–CHCl₃–MeOH mixtures to give 26 fractions. VLC fractions 19–21 (CHCl₃–MeOH 99:1) were combined and chromatographed by chromatotron chromatographic separations on a Chromatotron, which were carried out on rotors coated with a 1 mm thick layer of Merck Al₂O₃ 60 GF-254 (1092) or SiO₂ PF-254 (7749) on a SiO₂ rotor with petroleum ether–CHCl₃–MeOH mixtures, giving 64 fractions. Chromatotron fractions 33–37 (petroleum ether–CHCl₃ 50:50) were combined and 14-acetyl peregrine (1) (12 mg) and 14-methyl peregrine (2) (8 mg) were obtained by preparative chromatography (Si-gel; toluene–EtOAc–DEA 10:2:1).

Chromatotron fractions 38–43 (petroleum ether– $CHCl_3$ 40:60) were combined, and rechromatographed over a Si-gel column with petroleum ether– $CHCl_3$ mixtures to give peregrine (**3**) (35 mg). Chromatotron fractions 56–60 (CHCl₃–MeOH 98:2) were combined and peregrine alcohol (**4**) (31 mg) and *N*-deethylperegrine alcohol (**5**) (10 mg) were obtained by preparative chromatography (Si-gel; toluene–EtOAc–DEA 10:4:1).

1 - 5

1: R₁ = Et, R₂ = R₃ = Ac; **2:** R₁ = Et, R₂ = Ac, R₃ = Me **3:** R₁ = Et, R₂ = Ac, R₃ = H; **4:** R₁ = Et, R₂ = R₃ = H **5:** R₁ = R₂ = R₃ = H

¹⁾ Istanbul University, Faculty of Pharmacy, Department of Pharmacognosy, 34116 Beyazit-Istanbul-Turkey, e-mail: alimer@istanbul.edu.tr; 2) Marmara University, Faculty of Pharmacy, Department of Pharmacognosy, 34668 Haydarpasa-Istanbul-Turkey; 3) Suleyman Demirel University, Faculty of Science and Literature, Department of Botany, Isparta-Turkey; 4) Saarland University, Institute of Pharmacognosy and Analytical Phytochemistry, P.O.151150, 6604 Saarbrucken-Germany. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 301-302, May-June, 2007. Original article submitted February 14, 2006.

Position	1	2	3	4	5
1	84.3 d	84.4 d	84.5 d	85.2 d	83.0 d
2	27.0 t	26.8 t	26.5 t	26.5 t	25.5 t
3	37.2 t	36.9 t	37.3 t	37.2 t	34.9 t
4	34.2 s	34.1 s	34.5 s	34.6 s	34.3 s
5	56.3 d	56.1 d	56.4 d	59.0 d	58.8 d
6	73.1 d	73.3 d	73.4 d	73.0 d	72.8 d
7	42.1 d	42.1 d	42.7 d	45.7 d	45.6 d
8	78.7 s	78.0 s	79.0 s	80.7 s	77.4 s
9	41.5 d	41.8 d	44.5 d	44.0 d	45.1 d
10	46.0 d	46.2 d	46.0 d	46.2 d	49.0 d
11	48.5 s	48.4 s	48.3 s	48.3 s	48.4 s
12	28.7 t	28.6 t	28.8 t	28.5 t	28.1 t
13	39.0 d	39.1 d	38.6 d	37.9 d	39.0 d
14	76.0 d	84.1 d	75.5 d	75.4 d	75.2 d
15	35.5 t	35.3 t	33.2 t	33.1 t	33.7 t
16	83.6 d	83.6 d	82.4 d	82.4 d	82.2 d
17	64.2 d	63.8 d	64.8 d	64.4 d	77.0 d
18	25.9 q	26.0 q	25.9 q	26.0 q	26.3 q
19	57.5 t	57.5 t	57.5 t	58.0 t	52.0 t
N- <u>CH</u> 2-CH3	48.9 t	49.2 t	49.5 t	49.6 t	-
N-CH ₂ - <u>CH</u> 3	13.6 q	13.4 q	13.5 q	13.7 q	-
OCH ₃ -1	56.1 q	55.8 q	56.2 q	56.3 q	55.5 q
OCH ₃ -8	48.0 q	47.8 q	48.5 q	48.6 q	48.3 q
OCH3-14	-	57.5 q	-	-	-
OCH3-16	56.5 q	56.2 q	56.5 q	56.5 q	56.4 q
Ac-6	171.5 s	170.8 s	170.2 s	-	-
	21.7 q	21.7 q	21.5 q	-	-
Ac-14	171.5 s	-	-	-	-
	21.5 q	-	-	-	-

TABLE 1. ¹³C NMR Data of *Delphinium cinereum* Alkaloids

All the alkaloids were identified by comparison of their 1 H and 13 C, DEPT, and NMR data [7–11] and in some cases by Co-TLC behavior with those of authentic samples [7–10].

This is the second report for the occurrence of *N*-deethylperegrine alcohol in a plant [7]. The 13 C NMR data of the isolated alkaloids are shown in Table 1.

NMR spectra were recorded on a Bruker 500 MHz spectrometer. MS were determined on a Finnigan MAT 90 spectrometer.

ACKNOWLEDGMENT

A. H. M. thanks the Alexander von Humboldt Foundation for a fellowship.

REFERENCES

- 1. P. H. Davis, Flora of Turkey and the East Aegean Islands, University Press, Edinburgh, 1, 108 (1965).
- 2. P. H. Davis, Flora of Turkey and the East Aegean Islands, University Press, Edinburgh, 10, 15 (1988).
- 3. A. H. Mericli, F. Mericli, V. Seyhan, A. Ulubelen, H. K. Desai, B. S. Joshi, Q. Teng, and S. W. Pelletier, *Heterocyles*, **45**, 1955 (1997).

- A. H. Mericli, F. Mericli, A. Ulubelen, H. K. Desai, B. S. Joshi, S. W. Pelletier, S. Ozden, and M. Kucukislamoglu, *Heterocyles*, 47, 329 (1998).
- 5. A. H. Mericli, F. Mericli, E. Dogru, H. Ozcelik, Atta-ur-Rahman, and A. Ulubelen, *Phytochemistry*, **51**, 337 (1999).
- 6. A. H. Mericli, F. Mericli, A. Ulubelen, M. Bahar, R. Ilarslan, G. Algul, H. K. Desai, Q. Teng, and S. W. Pelletier, *Pharmazie*, **55**, 696 (2000).
- 7. A. H. Mericli, F. Mericli, H. K. Desai, R. Ilarslan, A. Ulubelen, and S. W. Pelletier, *Pharmazie*, 56, 418 (2001).
- 8. A. Ulubelen, A. H. Mericli, F. Mericli, and R. Ilarslan, *Phytochemistry*, **31**, 1019 (1992).
- 9. A. Ulubelen, A. H. Mericli, F. Mericli, and R. Ilarslan, *Phytochemistry*, **33**, 213 (1993).
- 10. G. De la Fuente, A. H. Mericli, L. Ruiz-Mesia, A. Ulubelen, F.Mericli, and R. Ilarslan, *Phytochemistry*, **39**, 1467 (1995).
- 11. G. De la Fuente, L. Ruiz-Mesia, and M. L. Rodriguez, Helv. Chim. Acta, 77, 1768 (1994).